



## PUBLISHED PROJECT REPORT PPR2078

Cost and benefit analysis of new vehicle safety technologies

Addendum: Technology package 'All technologies excluding AIF'

M Seidl, L Smith, D Palmer, C Baverstock, O Howes,  
J Radcliffe, B Gupta, M Jones, S Varadarajan, B But,  
P Martin

## Report details

|                                    |                                                                       |                                     |                    |
|------------------------------------|-----------------------------------------------------------------------|-------------------------------------|--------------------|
| <b>Report prepared for:</b>        | Department for Transport (DfT), International Vehicle Standards (IVS) |                                     |                    |
| <b>Project/customer reference:</b> | T0408/TETI0057                                                        |                                     |                    |
| <b>Copyright:</b>                  | © TRL Limited                                                         |                                     |                    |
| <b>Report date:</b>                | July 2025                                                             |                                     |                    |
| <b>Report status/version:</b>      | Final                                                                 |                                     |                    |
| <b>Quality approval:</b>           |                                                                       |                                     |                    |
| Cathy Booth<br>(Project Manager)   | <b>Cathy Booth</b>                                                    | Phil Martin<br>(Technical Reviewer) | <b>Phil Martin</b> |

## Disclaimer

This report has been produced by TRL Limited (TRL) under a contract with Department for Transport (DfT), International Vehicle Standards (IVS). Any views expressed in this report are not necessarily those of Department for Transport (DfT), International Vehicle Standards (IVS).

The information contained herein is the property of TRL Limited and does not necessarily reflect the views or policies of the customer for whom this report was prepared. Whilst every effort has been made to ensure that the matter presented in this report is relevant, accurate and up-to-date, TRL Limited cannot accept any liability for any error or omission, or reliance on part or all of the content in another context.

When purchased in hard copy, this publication is printed on paper that is FSC (Forest Stewardship Council) and TCF (Totally Chlorine Free) registered.

## 1 Approach

This ad hoc report concerns the technology package 'All technologies excluding AIF':

|                                       | ADW | AIF | BSI | DAW | DIV | EBC | EBP | EBV | EDR | ELK | ESS | FFI | FOI | ISA | MOI | PSI | PWI | RMA | TPM |
|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| <i>All technologies excluding AIF</i> | ■   | □   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   | ■   |

The results reported were created using the method and tools described in:

**Seidl et al. (2024).** *Cost and benefit analysis of new vehicle safety technologies (CPR4125).* TRL: Crowthorne

## 2 Cost effectiveness and primary impacts

Table 1: Central Estimate: Cost effectiveness and primary impacts, 2025–2039 (2025 prices, 2025 present values)

| KSI prevented 2025–2039 |               | Fitment costs (£ million) | Repair / maintenance costs (£ million) | BCR        | CO <sub>2</sub> prevented (kilo-tonnes) | NOx prevented (tonnes) | PM <sub>10</sub> prevented (tonnes) | Diesel saved (thousand litres) | Petrol saved (thousand litres) | Electricity saved (million kWh) | Journey time saved (million hours) |
|-------------------------|---------------|---------------------------|----------------------------------------|------------|-----------------------------------------|------------------------|-------------------------------------|--------------------------------|--------------------------------|---------------------------------|------------------------------------|
| M1                      | 9,953         | 1,001.4                   | 72.8                                   | 4.8        | 143.0                                   | 0.0                    | 0.0                                 | 18,832.7                       | 40,482.0                       | 502.4                           | 0.0                                |
| M2M3                    | 1,764         | 19.2                      | 1.2                                    | 42.1       | 9.0                                     | 0.0                    | 4.7                                 | 3,394.1                        | 0.0                            | 15.3                            | 0.0                                |
| N1                      | 923           | 143.7                     | 8.9                                    | 3.5        | 73.1                                    | 0.0                    | 41.0                                | 27,259.7                       | 489.1                          | 164.3                           | 0.0                                |
| N2N3                    | 2,805         | 188.8                     | 11.5                                   | 8.7        | 79.3                                    | 0.0                    | 98.7                                | 30,063.7                       | 0.0                            | 83.7                            | 0.0                                |
| <b>Total</b>            | <b>14,256</b> | <b>1,358.6</b>            | <b>94.5</b>                            | <b>5.4</b> | <b>304.3</b>                            | <b>0.0</b>             | <b>144.4</b>                        | <b>79,550.3</b>                | <b>40,971.2</b>                | <b>765.7</b>                    | <b>0.0</b>                         |

Table 2: Optimistic scenario: Cost effectiveness and primary impacts, 2025–2039 (2025 prices, 2025 present values)

| KSI prevented 2025–2039 |               | Fitment costs (£ million) | Repair / maintenance costs (£ million) | BCR         | CO <sub>2</sub> prevented (kilo-tonnes) | NOx prevented (tonnes) | PM <sub>10</sub> prevented (tonnes) | Diesel saved (thousand litres) | Petrol saved (thousand litres) | Electricity saved (million kWh) | Journey time saved (million hours) |
|-------------------------|---------------|---------------------------|----------------------------------------|-------------|-----------------------------------------|------------------------|-------------------------------------|--------------------------------|--------------------------------|---------------------------------|------------------------------------|
| M1                      | 10,324        | 603.4                     | 45.8                                   | 11.2        | 327.8                                   | 56.8                   | 31.5                                | 42,967.5                       | 93,061.1                       | 1,077.7                         | 157.8                              |
| M2M3                    | 1,983         | 11.9                      | 0.6                                    | 91.0        | 32.6                                    | 18.0                   | 12.4                                | 12,353.8                       | 0.0                            | 54.2                            | 13.2                               |
| N1                      | 969           | 86.7                      | 5.6                                    | 10.8        | 159.1                                   | 49.1                   | 91.0                                | 59,315.6                       | 1,090.7                        | 348.2                           | 31.2                               |
| N2N3                    | 3,080         | 116.9                     | 5.8                                    | 18.1        | 182.5                                   | 81.5                   | 237.3                               | 69,135.6                       | 0.0                            | 191.4                           | 18.7                               |
| <b>Total</b>            | <b>14,985</b> | <b>822.4</b>              | <b>57.8</b>                            | <b>12.7</b> | <b>701.9</b>                            | <b>205.4</b>           | <b>372.3</b>                        | <b>183,772.5</b>               | <b>94,151.8</b>                | <b>1,671.5</b>                  | <b>220.7</b>                       |

Table 3: Pessimistic scenario: Cost effectiveness and primary impacts, 2025–2039 (2025 prices, 2025 present values)

| KSI prevented 2025–2039 |              | Fitment costs (£ million) | Repair / maintenance costs (£ million) | BCR        | CO <sub>2</sub> prevented (kilo-tonnes) | NOx prevented (tonnes) | PM <sub>10</sub> prevented (tonnes) | Diesel saved (thousand litres) | Petrol saved (thousand litres) | Electricity saved (million kWh) | Journey time saved (million hours) |
|-------------------------|--------------|---------------------------|----------------------------------------|------------|-----------------------------------------|------------------------|-------------------------------------|--------------------------------|--------------------------------|---------------------------------|------------------------------------|
| M1                      | 7,008        | 1,795.5                   | 111.4                                  | 1.0        | -48.4                                   | -52.8                  | -29.0                               | -6,195.1                       | -13,911.4                      | -99.2                           | -146.1                             |
| M2M3                    | 1,150        | 32.1                      | 2.0                                    | 11.6       | -14.7                                   | -17.6                  | -3.2                                | -5,566.9                       | 0.0                            | -23.6                           | -12.9                              |
| N1                      | 642          | 278.0                     | 13.5                                   | 0.0        | -15.5                                   | -45.3                  | -8.3                                | -5,760.4                       | -125.7                         | -25.2                           | -26.7                              |
| N2N3                    | 1,857        | 344.7                     | 18.2                                   | 2.3        | -23.7                                   | -79.3                  | -41.5                               | -8,998.9                       | 0.0                            | -23.9                           | -18.3                              |
| <b>Total</b>            | <b>9,918</b> | <b>2,459.6</b>            | <b>145.3</b>                           | <b>1.0</b> | <b>-102.3</b>                           | <b>-194.9</b>          | <b>-82.0</b>                        | <b>-26,521.2</b>               | <b>-14,037.1</b>               | <b>-171.9</b>                   | <b>-204.0</b>                      |

### 3 Monetised impacts

**Table 4: Monetised social impacts by scenario, 2025–2039 (£, 2025 prices, 2025 present values)**

|                                            | Pessimistic scenario | Central estimate | Optimistic scenario |
|--------------------------------------------|----------------------|------------------|---------------------|
| <b>Casualties and collisions prevented</b> | 5,108,563,880        | 7,374,925,644    | 7,775,152,591       |
| <b>CO<sub>2</sub> prevented</b>            | –25,305,762          | 75,173,867       | 173,389,736         |
| <b>NO<sub>x</sub> prevented</b>            | –1,919,981           | 0                | 1,854,592           |
| <b>PM<sub>10</sub> prevented</b>           | –8,860,827           | 15,820,569       | 40,640,267          |
| <b>Diesel saved</b>                        | –58,361,332          | 174,657,731      | 404,139,603         |
| <b>Petrol saved</b>                        | –16,732,032          | 48,832,975       | 112,202,203         |
| <b>Electricity saved</b>                   | –36,890,754          | 154,275,956      | 339,803,107         |
| <b>Journey time saved</b>                  | –2,266,479,402       | 0                | 2,445,293,961       |
| <b>Fitment costs</b>                       | 2,459,584,375        | 1,358,647,671    | 822,435,260         |
| <b>Repair and maintenance costs</b>        | 145,290,336          | 94,516,120       | 57,838,907          |

**Table 5: Indirect taxation – petrol, diesel and electricity taxes lost, 2025–2039 (£, 2025 prices, 2025 present values)**

|                  | Pessimistic scenario | Central estimate | Optimistic scenario |
|------------------|----------------------|------------------|---------------------|
| <b>Duty lost</b> | –20,455,953          | 60,663,988       | 141,120,258         |
| <b>VAT lost</b>  | –1,537,177           | 5,565,296        | 12,585,073          |

**Table 6: Breakdown of benefits from casualties and collisions prevented, 2025–2039 (£, 2025 prices, 2025 present values)**

|                                           | Pessimistic scenario | Central estimate | Optimistic scenario |
|-------------------------------------------|----------------------|------------------|---------------------|
| <b>Casualties prevented – killed</b>      | 752,600,728          | 1,178,567,191    | 1,236,422,495       |
| <b>Casualties prevented – serious</b>     | 2,397,714,289        | 3,424,925,471    | 3,602,621,757       |
| <b>Casualties prevented – slight</b>      | 686,221,094          | 971,150,454      | 1,029,332,226       |
| <b>Collisions prevented – killed</b>      | 9,817,543            | 15,326,257       | 16,117,310          |
| <b>Collisions prevented – serious</b>     | 68,135,148           | 96,991,348       | 102,191,588         |
| <b>Collisions prevented – slight</b>      | 105,810,085          | 149,144,401      | 158,282,679         |
| <b>Collisions prevented – damage-only</b> | 1,088,264,993        | 1,538,820,522    | 1,630,184,537       |

## 4 Secondary impacts

While the above cost-effectiveness indicators contain the dominant safety, environmental, journey time and cost impacts, the technologies also cause secondary impacts, which are of less importance and/or for which sufficient data or valuations were unavailable to undertake a quantitative approach. Secondary economic, environmental, social and public accounts impacts were assessed in a qualitative manner on a seven-point scale of adverse, neutral or beneficial. The secondary impacts identified are summarised in Table 7. Where a secondary impact potentially has relevance for the Public Sector Equality Duty (PSED), this is indicated in the table.

**Table 7: Summary of secondary impacts, their qualitative appraisals on seven-point scale (strongly adverse to strongly beneficial) and potential relevance for Public Sector Equality Duty (PSED)**

| Impacts       |                            | -3 | -2 | -1 | 0 | +1 | +2 | +3 | PSED relevant |
|---------------|----------------------------|----|----|----|---|----|----|----|---------------|
| Economic      | Journey time reliability   |    |    |    |   |    | ■  |    | No            |
|               | Technological capabilities |    |    |    |   | ■  |    |    | No            |
|               | Resources for research     |    |    |    |   |    | ■  |    | No            |
| Environmental | Traffic noise              |    |    |    |   | ■  |    |    | No            |
|               | Water pollution            |    |    |    |   | ■  |    |    | No            |
| Social        | Journey time reliability   |    |    |    |   |    | ■  |    | No            |
|               | Active travel              |    |    |    |   |    | ■  |    | No            |
|               | Crime                      |    |    |    | ■ |    |    |    | No            |
|               | Access to justice          |    |    |    |   |    | ■  |    | No            |
|               | Affordability              |    | ■  |    |   |    |    |    | Yes           |
|               | Accessible vehicles        |    |    | ■  |   |    |    |    | Yes           |

## Addendum: Technology package 'All technologies excluding AIF'

The objective of this study was to quantify the benefits and costs that would arise from mandating the fitment of up to 19 vehicle safety technologies to new cars, vans, lorries, buses and coaches in Great Britain. This will provide the Department for Transport with an evidence base to develop policy options for ministers that are cost-effective and impactful for Great Britain in order to enable safer and cleaner transport while minimising the negative impacts.

This addendum concerns the technology package 'All technologies excluding AIF'. The results reported were created using the method and tools described in the main report: Seidl et al. (2024). Cost and benefit analysis of new vehicle safety technologies (PPR2077). TRL: Crowthorne

It was found that the technology package 'All technologies excluding AIF' brings benefits outweighing the costs with a benefit-to-cost ratio of 5.4, i.e. it provides very high value for money, and takes advantage of synergies between different technologies, such as lower costs due to sensor sharing. Over the entire appraisal period, the package may be expected to prevent approximately 14,000 killed or seriously injured casualties on Great Britain's roads when compared to business as usual.

### TRL

Crowthorne House, Nine Mile Ride,  
Wokingham, Berkshire, RG40 3GA,  
United Kingdom

T: +44 (0) 1344 773131

F: +44 (0) 1344 770356

E: [enquiries@trl.co.uk](mailto:enquiries@trl.co.uk)

W: [www.trl.co.uk](http://www.trl.co.uk)

**PPR2078**